
Logic Rules: Sparse Learning and Chordal Graphs

Alper Atamtürk1, Anna Deza1, Andrés Gómez2

1Department of Industrial Engineering and Operations Research,

University of California, Berkeley

2Department of Industrial and Systems Engineering,

University of Southern California

ISMP (Montréal)

July 25, 2024

Atamtürk, Deza, Gómez Logic Rules 1 / 23



Mixed Integer Programming for Sparse Learning

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Atamtürk, Deza, Gómez Logic Rules 2 / 23



Mixed Integer Programming for Sparse Learning

Sparsity in Decision-Making Models

Learning model makes predictions based on a feature vector with p

features, x ∈ Rp. Suppose our model takes the form:

predictioni = f
(
β⊤xi

)
,

where β ∈ Rp are the regression coefficients.

Often, sparsity is desired: can be cheaper to deploy, better out-of-sample

performance, and important for interpretability.

Measure sparsity with ℓ0 pseudo-norm: ∥β∥0 =
∑p

i=1 I(βi ̸= 0).

Dense β

Sparse β

Atamtürk, Deza, Gómez Logic Rules 3 / 23



Mixed Integer Programming for Sparse Learning

Sparsity in Decision-Making Models

Learning model makes predictions based on a feature vector with p

features, x ∈ Rp. Suppose our model takes the form:

predictioni = f
(
β⊤xi

)
,

where β ∈ Rp are the regression coefficients.

Often, sparsity is desired: can be cheaper to deploy, better out-of-sample

performance, and important for interpretability.

Measure sparsity with ℓ0 pseudo-norm: ∥β∥0 =
∑p

i=1 I(βi ̸= 0).

Dense β

Sparse β

Atamtürk, Deza, Gómez Logic Rules 3 / 23



Mixed Integer Programming for Sparse Learning

Sparsity in Decision-Making Models

Learning model makes predictions based on a feature vector with p

features, x ∈ Rp. Suppose our model takes the form:

predictioni = f
(
β⊤xi

)
,

where β ∈ Rp are the regression coefficients.

Often, sparsity is desired: can be cheaper to deploy, better out-of-sample

performance, and important for interpretability.

Measure sparsity with ℓ0 pseudo-norm: ∥β∥0 =
∑p

i=1 I(βi ̸= 0).

Dense β

Sparse β

Atamtürk, Deza, Gómez Logic Rules 3 / 23



Mixed Integer Programming for Sparse Learning

How do we build Sparse Machine Learning Models?

Given n observations with p features, (xi ∈ Rp, yi ∈ R)ni=1, we train models

by optimizing model coefficients β ∈ Rp that minimize loss function L(β).

(REG) ζR = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

+µ∥β∥0︸ ︷︷ ︸
Sparsity

.

(CARD) ζC = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

s.t ∥β∥0 ≤ k︸ ︷︷ ︸
Sparsity

• Exact sparsity makes this NP-hard

• Recent interest in using mixed integer optimization techniques to

solve sparse learning to optimality

Atamtürk, Deza, Gómez Logic Rules 4 / 23



Mixed Integer Programming for Sparse Learning

How do we build Sparse Machine Learning Models?

Given n observations with p features, (xi ∈ Rp, yi ∈ R)ni=1, we train models

by optimizing model coefficients β ∈ Rp that minimize loss function L(β).

(REG) ζR = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

+µ∥β∥0︸ ︷︷ ︸
Sparsity

.

(CARD) ζC = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

s.t ∥β∥0 ≤ k︸ ︷︷ ︸
Sparsity

• Exact sparsity makes this NP-hard

• Recent interest in using mixed integer optimization techniques to

solve sparse learning to optimality

Atamtürk, Deza, Gómez Logic Rules 4 / 23



Mixed Integer Programming for Sparse Learning

How do we build Sparse Machine Learning Models?

Given n observations with p features, (xi ∈ Rp, yi ∈ R)ni=1, we train models

by optimizing model coefficients β ∈ Rp that minimize loss function L(β).

(REG) ζR = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

+µ∥β∥0︸ ︷︷ ︸
Sparsity

.

(CARD) ζC = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

s.t ∥β∥0 ≤ k︸ ︷︷ ︸
Sparsity

• Exact sparsity makes this NP-hard

• Recent interest in using mixed integer optimization techniques to

solve sparse learning to optimality

Atamtürk, Deza, Gómez Logic Rules 4 / 23



Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

Goal: formulate sparse learning as a mixed integer optimization problem.

ζR = min
β

L(β) + λ∥β∥22 + µ∥β∥0

Atamtürk, Deza, Gómez Logic Rules 5 / 23



Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

1 Introduce binary indicator variables z to model ℓ0: zi = 0 ⇒ βi = 0.

ζR = min
β,z

L(β) + λ

p∑
i=1

β2
i + µ

p∑
i=1

zi

s.t. βi (1− zi ) = 0, j ∈ [p]

β ∈ Rp, z ∈ {0, 1}p

Atamtürk, Deza, Gómez Logic Rules 5 / 23



Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

2 Reformulate using the perspective function for each β2
i :

ζR = min
β∈Rp , z∈{0,1}p

L(β) + λ

p∑
i=1

β2
i

zi
+ µ

p∑
i=1

zi

→ can be represented with conic quadratic constraints

Atamtürk, Deza, Gómez Logic Rules 5 / 23



Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

• Have a MIP formulation, but scalability is a concern

• Atamtürk and Gómez (2020) introduce ℓ2 − ℓ0 screening rules: Use

solution to the convex relaxation to safely prune or fix features

(zi = 0 or zi = 1)

→ Eliminate features guaranteed to not be in the optimal solution

→ Reduce the dimension of problem before the full optimization step,

improving solution times

Atamtürk, Deza, Gómez Logic Rules 6 / 23



Screening Rules

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Atamtürk, Deza, Gómez Logic Rules 7 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Derived based on the dual of the perspective terms β2
i /zi , and only require

solving the convex relaxation of the sparse learning problem.

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.

Atamtürk, Deza, Gómez Logic Rules 8 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Sparse learning problem:

ζR = min
β∈Rp , z∈{0,1}p

L(β) + λ

p∑
i=1

β2
i

zi
+ µ

p∑
i=1

zi

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.

Atamtürk, Deza, Gómez Logic Rules 8 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Relax binary constraints & take Fenchel dual of the perspective function:

ζ(w) = min
β∈Rp ,
z∈[0,1]p

L(β) +
p∑

i=1

λwiβi +

p∑
i=1

(
µ− λ

w2
i

4

)
zi

→ ζ(w) gives a lower bound for ζR for any dual w ∈ Rp

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.

Atamtürk, Deza, Gómez Logic Rules 8 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Relax binary constraints & take Fenchel dual of the perspective function:

ζ(w) = min
β∈Rp ,
z∈[0,1]p

L(β) +
p∑

i=1

λwiβi +

p∑
i=1

(
µ− λ

w2
i

4

)
zi

→ ζ(w) gives a lower bound for ζR for any dual w ∈ Rp

µ− λ
w2
i
4 determines zi

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.

Atamtürk, Deza, Gómez Logic Rules 8 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Relax binary constraints & take Fenchel dual of the perspective function:

ζ(w) = min
β∈Rp ,
z∈[0,1]p

L(β) +
p∑

i=1

λwiβi +

p∑
i=1

(
µ− λ

w2
i

4

)
zi

→ ζ(w) gives a lower bound for ζR for any dual w ∈ Rp

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.

Atamtürk, Deza, Gómez Logic Rules 8 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Relax binary constraints & take Fenchel dual of the perspective function:

ζ(w) = min
β∈Rp ,
z∈[0,1]p

L(β) +
p∑

i=1

λwiβi +

p∑
i=1

(
µ− λ

w2
i

4

)
zi

→ ζ(w) gives a lower bound for ζR for any dual w ∈ Rp

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.

Atamtürk, Deza, Gómez Logic Rules 8 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Relax binary constraints & take Fenchel dual of the perspective function:

ζ(w) = min
β∈Rp ,
z∈[0,1]p

L(β) +
p∑

i=1

λwiβi +

p∑
i=1

(
µ− λ

w2
i

4

)
zi

→ ζ(w) gives a lower bound for ζR for any dual w ∈ Rp

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.

Atamtürk, Deza, Gómez Logic Rules 8 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Prop. (Atamtürk and Gómez (2020)) Safe Screening for (REG)

For any dual variable w ∈ Rp, let α = µ− λw2

4 and ζu an upper bound on

(REG). Then any optimal solution z∗ to (REG) satisfies the following rule

given the corresponding condition holds.

Condition Screening Rule

ζ(w) + αi > ζu z∗i = 0

ζ(w)− αi > ζu z∗i = 1

Very effective if relaxation gap is small, but degrades as gap increases.

→ We introduce logic rules, generalizing screening rules: consider the

logical relationships between groups of features

Atamtürk, Deza, Gómez Logic Rules 9 / 23



Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Prop. (Atamtürk and Gómez (2020)) Safe Screening for (REG)

For any dual variable w ∈ Rp, let α = µ− λw2

4 and ζu an upper bound on

(REG). Then any optimal solution z∗ to (REG) satisfies the following rule

given the corresponding condition holds.

Condition Screening Rule

ζ(w) + αi > ζu z∗i = 0

ζ(w)− αi > ζu z∗i = 1

Very effective if relaxation gap is small, but degrades as gap increases.

→ We introduce logic rules, generalizing screening rules: consider the

logical relationships between groups of features
Atamtürk, Deza, Gómez Logic Rules 9 / 23



Logic Rules

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Atamtürk, Deza, Gómez Logic Rules 10 / 23



Logic Rules

Introducing Logic Rules

Logic rules screen for:

Simultaneous inclusion

of features

zi + zj ≤ 1

Simultaneous exclusion

of features

zi + zj ≥ 1

Pairwise ranking of

features

zi ≤ zj

Screening rules derivation: If ζ(w) + αi > ζu ⇒ z∗i = 0.

Logic rules: want a lower bound for ζR(zi = 1, zj = 1)

→ Natural lower bound: ζ(w) + αi + αj

→ ζ(w) + αi + αj > ζu ⇒ zj + zk ≤ 1

Atamtürk, Deza, Gómez Logic Rules 11 / 23



Logic Rules

Introducing Logic Rules

Logic rules screen for:

Simultaneous inclusion

of features

zi + zj ≤ 1

Simultaneous exclusion

of features

zi + zj ≥ 1

Pairwise ranking of

features

zi ≤ zj

Screening rules derivation: If ζ(w) + αi > ζu ⇒ z∗i = 0.

Logic rules: want a lower bound for ζR(zi = 1, zj = 1)

→ Natural lower bound: ζ(w) + αi + αj

→ ζ(w) + αi + αj > ζu ⇒ zj + zk ≤ 1

Atamtürk, Deza, Gómez Logic Rules 11 / 23



Logic Rules

Logic Rules

Prop. Logic Rules for (REG)

For any dual variable w ∈ Rp, let αi = µ− λ
4w

2
i and ζu be an upper

bound on (REG). Then any optimal solution z∗ to (REG) satisfies the

following rule given the corresponding condition holds.

Condition Logic Rule

ζ(w)− αj − αk > ζu zi + zj ≥ 1

ζ(w) + αi + αj > ζu zi + zj ≤ 1

ζ(w) + αi − αj > ζu zi − zj ≤ 0

ζ(w)− αi + αj > ζu zi − zj ≤ 0

• On their own, pairwise interactions do not help much

→ We want to construct stronger relationships, and leverage them

Atamtürk, Deza, Gómez Logic Rules 12 / 23



Logic Rules

Logic Rules

Prop. Logic Rules for (REG)

For any dual variable w ∈ Rp, let αi = µ− λ
4w

2
i and ζu be an upper

bound on (REG). Then any optimal solution z∗ to (REG) satisfies the

following rule given the corresponding condition holds.

Condition Logic Rule

ζ(w)− αj − αk > ζu zi + zj ≥ 1

ζ(w) + αi + αj > ζu zi + zj ≤ 1

ζ(w) + αi − αj > ζu zi − zj ≤ 0

ζ(w)− αi + αj > ζu zi − zj ≤ 0

• On their own, pairwise interactions do not help much

→ We want to construct stronger relationships, and leverage them
Atamtürk, Deza, Gómez Logic Rules 12 / 23



Logic Rules

How can logic rules help?

Solvers can exploit constraints of the type
∑

i∈S zi ≤ 1 (SOS1)

• More effective branching

• Better preprocessing, heuristics, cutting planes, may lead to

order-of-magnitudes speedup (Fischer & Pfetsch, 2018)

We can use logic rules to get such implications.

z1 + z2 ≤ 1

z1 + z3 ≤ 1

z2 + z3 ≤ 1

z ∈ {0, 1}3

⇒
z1 + z2 + z3 ≤ 1

z ∈ {0, 1}3

z1 z2

z3

Build conflict graph to get clique inequalities

Atamtürk, Deza, Gómez Logic Rules 13 / 23



Logic Rules

How can logic rules help?

Solvers can exploit constraints of the type
∑

i∈S zi ≤ 1 (SOS1)

• More effective branching

• Better preprocessing, heuristics, cutting planes, may lead to

order-of-magnitudes speedup (Fischer & Pfetsch, 2018)

We can use logic rules to get such implications.

z1 + z2 ≤ 1

z1 + z3 ≤ 1

z2 + z3 ≤ 1

z ∈ {0, 1}3

⇒
z1 + z2 + z3 ≤ 1

z ∈ {0, 1}3

z1 z2

z3

Build conflict graph to get clique inequalities

Atamtürk, Deza, Gómez Logic Rules 13 / 23



Logic Rules

How can logic rules help?

Solvers can exploit constraints of the type
∑

i∈S zi ≤ 1 (SOS1)

• More effective branching

• Better preprocessing, heuristics, cutting planes, may lead to

order-of-magnitudes speedup (Fischer & Pfetsch, 2018)

We can use logic rules to get such implications.

z1 + z2 ≤ 1

z1 + z3 ≤ 1

z2 + z3 ≤ 1

z ∈ {0, 1}3

⇒
z1 + z2 + z3 ≤ 1

z ∈ {0, 1}3

z1 z2

z3

Build conflict graph to get clique inequalities

Atamtürk, Deza, Gómez Logic Rules 13 / 23



Logic Rules

Conflict Graph

Logic rules imply a conflict graph G = (V ,E ) with V = {1, . . . , p} and

E = {(i , j) : zi + zj ≤ 1, i , j ∈ V }.

For any clique C , at most one vertex can be selected:
∑

i∈C zi ≤ 1.

Example:

z2 + z4 ≤ 1, z3 + z7 ≤ 1
z1 z2

z3

z4 z5

z6z7

• To make strongest implications, want to identify all maximal cliques

• For general graphs: exponentially many maximal cliques...

→ We can exploit special structure of G generated by logic rules

Atamtürk, Deza, Gómez Logic Rules 14 / 23



Logic Rules

Conflict Graph

Logic rules imply a conflict graph G = (V ,E ) with V = {1, . . . , p} and

E = {(i , j) : zi + zj ≤ 1, i , j ∈ V }.
For any clique C , at most one vertex can be selected:

∑
i∈C zi ≤ 1.

Example:

z1+z2 ≤ 1, z1+z2 ≤ 1, z2+z3 ≤ 1

z4+z5 ≤ 1, z4+z6 ≤ 1, z5+z7 ≤ 1

z5+z6 ≤ 1, z5+x7 ≤ 1, z6+z7 ≤ 1

z2 + z4 ≤ 1, z3 + z7 ≤ 1
z1 z2

z3

z4 z5

z6z7

• To make strongest implications, want to identify all maximal cliques

• For general graphs: exponentially many maximal cliques...

→ We can exploit special structure of G generated by logic rules

Atamtürk, Deza, Gómez Logic Rules 14 / 23



Logic Rules

Conflict Graph

Logic rules imply a conflict graph G = (V ,E ) with V = {1, . . . , p} and

E = {(i , j) : zi + zj ≤ 1, i , j ∈ V }.
For any clique C , at most one vertex can be selected:

∑
i∈C zi ≤ 1.

Example:

z1+z2 ≤ 1, z1+z2 ≤ 1, z2+z3 ≤ 1

z4+z5 ≤ 1, z4+z6 ≤ 1, z5+z7 ≤ 1

z5+z6 ≤ 1, z5+x7 ≤ 1, z6+z7 ≤ 1

z2 + z4 ≤ 1, z3 + z7 ≤ 1
z1 z2

z3

z4 z5

z6z7

• To make strongest implications, want to identify all maximal cliques

• For general graphs: exponentially many maximal cliques...

→ We can exploit special structure of G generated by logic rules

Atamtürk, Deza, Gómez Logic Rules 14 / 23



Logic Rules

Conflict Graph

Logic rules imply a conflict graph G = (V ,E ) with V = {1, . . . , p} and

E = {(i , j) : zi + zj ≤ 1, i , j ∈ V }.
For any clique C , at most one vertex can be selected:

∑
i∈C zi ≤ 1.

Example:

z1 + z2 + z3 ≤ 1

z4 + z5 + z6 + z6 ≤ 1

z2 + z4 ≤ 1, z3 + z7 ≤ 1 z1 z2

z3

z4 z5

z6z7

• To make strongest implications, want to identify all maximal cliques

• For general graphs: exponentially many maximal cliques...

→ We can exploit special structure of G generated by logic rules

Atamtürk, Deza, Gómez Logic Rules 14 / 23



Logic Rules

Conflict Graph

Logic rules imply a conflict graph G = (V ,E ) with V = {1, . . . , p} and

E = {(i , j) : zi + zj ≤ 1, i , j ∈ V }.
For any clique C , at most one vertex can be selected:

∑
i∈C zi ≤ 1.

Example:

z1 + z2 + z3 ≤ 1

z4 + z5 + z6 + z6 ≤ 1

z2 + z4 ≤ 1, z3 + z7 ≤ 1 z1 z2

z3

z4 z5

z6z7

• To make strongest implications, want to identify all maximal cliques

• For general graphs: exponentially many maximal cliques...

→ We can exploit special structure of G generated by logic rules

Atamtürk, Deza, Gómez Logic Rules 14 / 23



Logic Rules

Chordal Graphs

Definition (Chordal Graph)

A graph is chordal if every cycle of length at least four contains a chord,

that is, an edge between two non-adjacent vertices on the cycle.

Atamtürk, Deza, Gómez Logic Rules 15 / 23



Logic Rules

Chordal Graphs

Theorem

A chordal graph has linearly many maximal cliques.

The conflict graph G generated by the logic rules is chordal.

→ Can exploit structure to find all maximal cliques in polynomial time

Atamtürk, Deza, Gómez Logic Rules 16 / 23



Logic Rules

Chordal Graphs

Theorem

A chordal graph has linearly many maximal cliques.

The conflict graph G generated by the logic rules is chordal.

→ Can exploit structure to find all maximal cliques in polynomial time

Atamtürk, Deza, Gómez Logic Rules 16 / 23



Logic Rules

Finding Maximal Cliques in Logic Rules Conflict Graph

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a O(p log p) time algorithm to find all maximal cliques

generated by the conflict graph implied by the logic rules.

Key: Logic Rules say αi + αj > ζu − ζ(w) ⇒ (i , j) ∈ E .

Suppose α happens to be sorted in decreasing order.

• If αi + αi+n > ζu − ζ(w) ⇒ αℓ + αi+n > ζu − ζ(w) ∀ℓ = 1, . . . , i .

• Then we have {1, 2, . . . , i , i + n} is a clique.

Algorithm: sort α, then scan. Notice: no need to build G !

Atamtürk, Deza, Gómez Logic Rules 17 / 23



Logic Rules

Finding Maximal Cliques in Logic Rules Conflict Graph

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a O(p log p) time algorithm to find all maximal cliques

generated by the conflict graph implied by the logic rules.

Key: Logic Rules say αi + αj > ζu − ζ(w) ⇒ (i , j) ∈ E .

Suppose α happens to be sorted in decreasing order.

• If αi + αi+n > ζu − ζ(w) ⇒ αℓ + αi+n > ζu − ζ(w) ∀ℓ = 1, . . . , i .

• Then we have {1, 2, . . . , i , i + n} is a clique.

Algorithm: sort α, then scan. Notice: no need to build G !

Atamtürk, Deza, Gómez Logic Rules 17 / 23



Logic Rules

Finding Maximal Cliques in Logic Rules Conflict Graph

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a O(p log p) time algorithm to find all maximal cliques

generated by the conflict graph implied by the logic rules.

Key: Logic Rules say αi + αj > ζu − ζ(w) ⇒ (i , j) ∈ E .

Suppose α happens to be sorted in decreasing order.

• If αi + αi+n > ζu − ζ(w)

⇒ αℓ + αi+n > ζu − ζ(w) ∀ℓ = 1, . . . , i .

• Then we have {1, 2, . . . , i , i + n} is a clique.

Algorithm: sort α, then scan. Notice: no need to build G !

Atamtürk, Deza, Gómez Logic Rules 17 / 23



Logic Rules

Finding Maximal Cliques in Logic Rules Conflict Graph

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a O(p log p) time algorithm to find all maximal cliques

generated by the conflict graph implied by the logic rules.

Key: Logic Rules say αi + αj > ζu − ζ(w) ⇒ (i , j) ∈ E .

Suppose α happens to be sorted in decreasing order.

• If αi + αi+n > ζu − ζ(w) ⇒ αℓ + αi+n > ζu − ζ(w) ∀ℓ = 1, . . . , i .

• Then we have {1, 2, . . . , i , i + n} is a clique.

Algorithm: sort α, then scan. Notice: no need to build G !

Atamtürk, Deza, Gómez Logic Rules 17 / 23



Logic Rules

Finding Maximal Cliques in Logic Rules Conflict Graph

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a O(p log p) time algorithm to find all maximal cliques

generated by the conflict graph implied by the logic rules.

Key: Logic Rules say αi + αj > ζu − ζ(w) ⇒ (i , j) ∈ E .

Suppose α happens to be sorted in decreasing order.

• If αi + αi+n > ζu − ζ(w) ⇒ αℓ + αi+n > ζu − ζ(w) ∀ℓ = 1, . . . , i .

• Then we have {1, 2, . . . , i , i + n} is a clique.

Algorithm: sort α, then scan. Notice: no need to build G !

Atamtürk, Deza, Gómez Logic Rules 17 / 23



Logic Rules

Overview of logic rules

Stage 1: Make building blocks.

Find logical relationships between

pairs of features, equivalent to

exclusivity constraints.

→ Solve a convex problem

Stage 2: Construct stronger inequalities.

Construct stronger inequalities implied

by Stage 1, equivalent to finding

maximal cliques in a conflict graph.

→ Exploit special structure to efficiently

find all maximal cliques

Output: {C1,C2, . . . ,Ct} such that
∑

i∈Cj
zi ≤ 1 is safe to add to our

sparse learning problem.

Atamtürk, Deza, Gómez Logic Rules 18 / 23



Logic Rules

Overview of logic rules

Stage 1: Make building blocks.

Find logical relationships between

pairs of features, equivalent to

exclusivity constraints.

→ Solve a convex problem

Stage 2: Construct stronger inequalities.

Construct stronger inequalities implied

by Stage 1, equivalent to finding

maximal cliques in a conflict graph.

→ Exploit special structure to efficiently

find all maximal cliques

Output: {C1,C2, . . . ,Ct} such that
∑

i∈Cj
zi ≤ 1 is safe to add to our

sparse learning problem.

Atamtürk, Deza, Gómez Logic Rules 18 / 23



Numerical Results

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Atamtürk, Deza, Gómez Logic Rules 19 / 23



Numerical Results

Numerical Results

We solve (cardinality-constrained) sparse linear regression on synthetic and

real data sets and compare:

• Gurobi alone

• Gurobi + screening rules

• Gurobi + screening rules + logic rules

Atamtürk, Deza, Gómez Logic Rules 20 / 23



Numerical Results

Synthetic Data

We generate synthetic data with 1000 features, 100 observations, and vary

the noise level (SNR) and ℓ2 regularization strength (λ). Solve with

cardinality constraint, k = 10.

Atamtürk, Deza, Gómez Logic Rules 21 / 23



Numerical Results

Synthetic Data

We generate synthetic data with 1000 features, 100 observations, and vary

the noise level (SNR) and ℓ2 regularization strength (λ). Solve with

cardinality constraint, k = 10.

SNR λ RGap % GRB Runtime (s)
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

0.05

1/10 47.4 1,572 1,574 981

1/8 31.6 1,083 1,083 581

1/4 7.5 761 4.1 3.8

1/2 1.6 439 0.7 0.7

1.0

1/10 39.8 728 733 482

1/8 28.5 715 505 266

1/4 7.5 646 7.8 6.4

1/2 1.5 386 0.6 0.6

6.0

1/10 25.5 684 276 57

1/8 20.3 755 163 40

1/4 6.0 605 1.0 1.0

1/2 1.4 527 0.5 0.5

Average 18.2 741 362 202

Atamtürk, Deza, Gómez Logic Rules 21 / 23



Numerical Results

Synthetic Data

Atamtürk, Deza, Gómez Logic Rules 21 / 23



Numerical Results

Real Data Results

We use the Riboflavin dataset, 4, 088 with 71 observations, varying the

sparsity constraint (k) and ℓ2 regularization strength (λ). We solve with a

one-hour time limit, reporting the end gap if no solution is found.

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

0.25%

2.5 (35%) (3%)

4 91 87

5 39 38

0.5%

2.5 128 109

4 47 42

5 38 38

1.25%

2.5 187 156

4 50 47

5 37 37

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

2.5%

2.5 (66%) (24%)

4 (59%) (11%)

5 1,607 3,044

3.5%

2.5 (46%) (14%)

4 1,134 622

5 1,441 399

5%

2.5 2,677 1,290

4 1,228 434

5 3,101 410

Atamtürk, Deza, Gómez Logic Rules 22 / 23



Numerical Results

Real Data Results

We use the Riboflavin dataset, 4, 088 with 71 observations, varying the

sparsity constraint (k) and ℓ2 regularization strength (λ). We solve with a

one-hour time limit, reporting the end gap if no solution is found.

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

0.25%

2.5 (35%) (3%)

4 91 87

5 39 38

0.5%

2.5 128 109

4 47 42

5 38 38

1.25%

2.5 187 156

4 50 47

5 37 37

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

2.5%

2.5 (66%) (24%)

4 (59%) (11%)

5 1,607 3,044

3.5%

2.5 (46%) (14%)

4 1,134 622

5 1,441 399

5%

2.5 2,677 1,290

4 1,228 434

5 3,101 410

Atamtürk, Deza, Gómez Logic Rules 22 / 23



Numerical Results

Real Data Results

We use the Riboflavin dataset, 4, 088 with 71 observations, varying the

sparsity constraint (k) and ℓ2 regularization strength (λ). We solve with a

one-hour time limit, reporting the end gap if no solution is found.

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

0.25%

2.5 (35%) (3%)

4 91 87

5 39 38

0.5%

2.5 128 109

4 47 42

5 38 38

1.25%

2.5 187 156

4 50 47

5 37 37

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

2.5%

2.5 (66%) (24%)

4 (59%) (11%)

5 1,607 3,044

3.5%

2.5 (46%) (14%)

4 1,134 622

5 1,441 399

5%

2.5 2,677 1,290

4 1,228 434

5 3,101 410

Atamtürk, Deza, Gómez Logic Rules 22 / 23



Numerical Results

Conclusion

Logic rules are general preprocessing framework that generates inequalities

that can be leveraged by mixed integer optimization solvers to speed up

sparse learning computation.

• Proposed method is efficient due to the exploitation of the

underlying structure (chordality) in the conflict graph generated by

the inequalities.

• Complements screening rules by helping in cases where they are

unsuccessful (large relaxation gaps).

Atamtürk, Deza, Gómez Logic Rules 23 / 23


	Mixed Integer Programming for Sparse Learning
	Screening Rules
	Logic Rules
	Numerical Results

