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Mixed Integer Programming for Sparse Learning

Sparsity in Decision-Making Models

Learning model makes predictions based on a feature vector with p

features, x ∈ Rp. Suppose our model takes the form:

predictioni = f
(
β⊤xi

)
,

where β ∈ Rp are the regression coefficients.

Often, sparsity is desired: can be cheaper to deploy, better out-of-sample

performance, and important for interpretability.

Measure sparsity with ℓ0 pseudo-norm: ∥β∥0 =
∑p

i=1 I(βi ̸= 0).

Dense β

Sparse β
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Mixed Integer Programming for Sparse Learning

How do we build Sparse Machine Learning Models?

Given n observations with p features, (xi ∈ Rp, yi ∈ R)ni=1, we train models

by optimizing model coefficients β ∈ Rp that minimize loss function L(β).

(REG) ζR = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

+µ∥β∥0︸ ︷︷ ︸
Sparsity

.

(CARD) ζC = min
β∈Rp

L(β) + λ∥β∥22︸ ︷︷ ︸
Shrinkage

s.t ∥β∥0 ≤ k︸ ︷︷ ︸
Sparsity

• Exact sparsity makes this NP-hard

• Recent interest in using mixed integer optimization techniques to

solve sparse learning to optimality
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Atamtürk, Deza, Gómez Logic Rules 4 / 23



Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

Goal: formulate sparse learning as a mixed integer optimization problem.

ζR = min
β

L(β) + λ∥β∥22 + µ∥β∥0
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Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

1 Introduce binary indicator variables z to model ℓ0: zi = 0 ⇒ βi = 0.

ζR = min
β,z

L(β) + λ

p∑
i=1

β2
i + µ

p∑
i=1

zi

s.t. βi (1− zi ) = 0, j ∈ [p]

β ∈ Rp, z ∈ {0, 1}p
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Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

2 Reformulate using the perspective function for each β2
i :

ζR = min
β∈Rp , z∈{0,1}p

L(β) + λ

p∑
i=1

β2
i

zi
+ µ

p∑
i=1

zi

→ can be represented with conic quadratic constraints
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Mixed Integer Programming for Sparse Learning

MIO for Sparse Learning

• Have a MIP formulation, but scalability is a concern

• Atamtürk and Gómez (2020) introduce ℓ2 − ℓ0 screening rules: Use

solution to the convex relaxation to safely prune or fix features

(zi = 0 or zi = 1)

→ Eliminate features guaranteed to not be in the optimal solution

→ Reduce the dimension of problem before the full optimization step,

improving solution times
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Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Derived based on the dual of the perspective terms β2
i /zi , and only require

solving the convex relaxation of the sparse learning problem.

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.
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Atamtürk and Gómez (2020): Screening Rules

Relax binary constraints & take Fenchel dual of the perspective function:

ζ(w) = min
β∈Rp ,
z∈[0,1]p

L(β) +
p∑

i=1

λwiβi +

p∑
i=1

(
µ− λ

w2
i

4

)
zi

→ ζ(w) gives a lower bound for ζR for any dual w ∈ Rp

µ− λ
w2
i
4 > 0 ⇒ zi = 0

Lower bound: ζ(w) + µ− λ
w2
i
4 ≤ ζR(zi = 1)

ζ(w) + µ− λ
w2
i
4 > ζu︸︷︷︸
upper bound

⇒ no optimal solution has zi = 1.
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Screening Rules

Atamtürk and Gómez (2020): Screening Rules

Prop. (Atamtürk and Gómez (2020)) Safe Screening for (REG)

For any dual variable w ∈ Rp, let α = µ− λw2

4 and ζu an upper bound on

(REG). Then any optimal solution z∗ to (REG) satisfies the following rule

given the corresponding condition holds.

Condition Screening Rule

ζ(w) + αi > ζu z∗i = 0

ζ(w)− αi > ζu z∗i = 1

Very effective if relaxation gap is small, but degrades as gap increases.

→ We introduce logic rules, generalizing screening rules: consider the

logical relationships between groups of features
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Logic Rules

Introducing Logic Rules

Logic rules screen for:

Simultaneous inclusion

of features

zi + zj ≤ 1

Simultaneous exclusion

of features

zi + zj ≥ 1

Pairwise ranking of

features

zi ≤ zj

Screening rules derivation: If ζ(w) + αi > ζu ⇒ z∗i = 0.

Logic rules: want a lower bound for ζR(zi = 1, zj = 1)

→ Natural lower bound: ζ(w) + αi + αj

→ ζ(w) + αi + αj > ζu ⇒ zj + zk ≤ 1
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Logic Rules

Logic Rules

Prop. Logic Rules for (REG)

For any dual variable w ∈ Rp, let αi = µ− λ
4w

2
i and ζu be an upper

bound on (REG). Then any optimal solution z∗ to (REG) satisfies the

following rule given the corresponding condition holds.

Condition Logic Rule

ζ(w)− αj − αk > ζu zi + zj ≥ 1

ζ(w) + αi + αj > ζu zi + zj ≤ 1

ζ(w) + αi − αj > ζu zi − zj ≤ 0

ζ(w)− αi + αj > ζu zi − zj ≤ 0

• On their own, pairwise interactions do not help much

→ We want to construct stronger relationships, and leverage them
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Logic Rules

How can logic rules help?

Solvers can exploit constraints of the type
∑

i∈S zi ≤ 1 (SOS1)

• More effective branching

• Better preprocessing, heuristics, cutting planes, may lead to

order-of-magnitudes speedup (Fischer & Pfetsch, 2018)

We can use logic rules to get such implications.

z1 + z2 ≤ 1

z1 + z3 ≤ 1

z2 + z3 ≤ 1

z ∈ {0, 1}3

⇒
z1 + z2 + z3 ≤ 1

z ∈ {0, 1}3

z1 z2

z3

Build conflict graph to get clique inequalities
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Logic Rules

Conflict Graph

Logic rules imply a conflict graph G = (V ,E ) with V = {1, . . . , p} and

E = {(i , j) : zi + zj ≤ 1, i , j ∈ V }.

For any clique C , at most one vertex can be selected:
∑

i∈C zi ≤ 1.

Example:

z2 + z4 ≤ 1, z3 + z7 ≤ 1
z1 z2

z3

z4 z5

z6z7

• To make strongest implications, want to identify all maximal cliques

• For general graphs: exponentially many maximal cliques...

→ We can exploit special structure of G generated by logic rules
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Logic Rules

Chordal Graphs

Definition (Chordal Graph)

A graph is chordal if every cycle of length at least four contains a chord,

that is, an edge between two non-adjacent vertices on the cycle.
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Logic Rules

Chordal Graphs

Theorem

A chordal graph has linearly many maximal cliques.

The conflict graph G generated by the logic rules is chordal.

→ Can exploit structure to find all maximal cliques in polynomial time
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Logic Rules

Finding Maximal Cliques in Logic Rules Conflict Graph

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a O(p log p) time algorithm to find all maximal cliques

generated by the conflict graph implied by the logic rules.

Key: Logic Rules say αi + αj > ζu − ζ(w) ⇒ (i , j) ∈ E .

Suppose α happens to be sorted in decreasing order.

• If αi + αi+n > ζu − ζ(w) ⇒ αℓ + αi+n > ζu − ζ(w) ∀ℓ = 1, . . . , i .

• Then we have {1, 2, . . . , i , i + n} is a clique.

Algorithm: sort α, then scan. Notice: no need to build G !
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Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a O(p log p) time algorithm to find all maximal cliques

generated by the conflict graph implied by the logic rules.
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Logic Rules

Overview of logic rules

Stage 1: Make building blocks.

Find logical relationships between

pairs of features, equivalent to

exclusivity constraints.

→ Solve a convex problem

Stage 2: Construct stronger inequalities.

Construct stronger inequalities implied

by Stage 1, equivalent to finding

maximal cliques in a conflict graph.

→ Exploit special structure to efficiently

find all maximal cliques

Output: {C1,C2, . . . ,Ct} such that
∑

i∈Cj
zi ≤ 1 is safe to add to our

sparse learning problem.

Atamtürk, Deza, Gómez Logic Rules 18 / 23



Logic Rules

Overview of logic rules

Stage 1: Make building blocks.

Find logical relationships between

pairs of features, equivalent to

exclusivity constraints.

→ Solve a convex problem

Stage 2: Construct stronger inequalities.

Construct stronger inequalities implied

by Stage 1, equivalent to finding

maximal cliques in a conflict graph.

→ Exploit special structure to efficiently

find all maximal cliques

Output: {C1,C2, . . . ,Ct} such that
∑

i∈Cj
zi ≤ 1 is safe to add to our

sparse learning problem.
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Numerical Results

Numerical Results

We solve (cardinality-constrained) sparse linear regression on synthetic and

real data sets and compare:

• Gurobi alone

• Gurobi + screening rules

• Gurobi + screening rules + logic rules

Atamtürk, Deza, Gómez Logic Rules 20 / 23



Numerical Results

Synthetic Data

We generate synthetic data with 1000 features, 100 observations, and vary

the noise level (SNR) and ℓ2 regularization strength (λ). Solve with

cardinality constraint, k = 10.
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Numerical Results

Synthetic Data

We generate synthetic data with 1000 features, 100 observations, and vary

the noise level (SNR) and ℓ2 regularization strength (λ). Solve with

cardinality constraint, k = 10.

SNR λ RGap % GRB Runtime (s)
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

0.05

1/10 47.4 1,572 1,574 981

1/8 31.6 1,083 1,083 581

1/4 7.5 761 4.1 3.8

1/2 1.6 439 0.7 0.7

1.0

1/10 39.8 728 733 482

1/8 28.5 715 505 266

1/4 7.5 646 7.8 6.4

1/2 1.5 386 0.6 0.6

6.0

1/10 25.5 684 276 57

1/8 20.3 755 163 40

1/4 6.0 605 1.0 1.0

1/2 1.4 527 0.5 0.5

Average 18.2 741 362 202
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Numerical Results

Synthetic Data
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Numerical Results

Real Data Results

We use the Riboflavin dataset, 4, 088 with 71 observations, varying the

sparsity constraint (k) and ℓ2 regularization strength (λ). We solve with a

one-hour time limit, reporting the end gap if no solution is found.

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

0.25%

2.5 (35%) (3%)

4 91 87

5 39 38

0.5%

2.5 128 109

4 47 42

5 38 38

1.25%

2.5 187 156

4 50 47

5 37 37

k/p 102λ0
GRB + Screen

Runtime (s)

GRB + Screen +

Logic Runtime (s)

2.5%

2.5 (66%) (24%)

4 (59%) (11%)

5 1,607 3,044

3.5%

2.5 (46%) (14%)

4 1,134 622

5 1,441 399

5%

2.5 2,677 1,290

4 1,228 434

5 3,101 410
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Numerical Results

Conclusion

Logic rules are general preprocessing framework that generates inequalities

that can be leveraged by mixed integer optimization solvers to speed up

sparse learning computation.

• Proposed method is efficient due to the exploitation of the

underlying structure (chordality) in the conflict graph generated by

the inequalities.

• Complements screening rules by helping in cases where they are

unsuccessful (large relaxation gaps).
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