Logic Rules: Sparse Learning and Chordal Graphs

Alper Atamtürk¹, Anna Deza¹, Andrés Gómez²

¹Department of Industrial Engineering and Operations Research, University of California, Berkeley

²Department of Industrial and Systems Engineering, University of Southern California

> ISMP (Montréal) July 25, 2024

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Sparsity in Decision-Making Models

Learning model makes predictions based on a feature vector with p features, $x \in \mathbb{R}^{p}$. Suppose our model takes the form:

prediction_i =
$$f\left(\beta^{\top}x_{i}\right)$$
,

where $\beta \in \mathbb{R}^p$ are the regression coefficients.

Sparsity in Decision-Making Models

Learning model makes predictions based on a feature vector with p features, $x \in \mathbb{R}^{p}$. Suppose our model takes the form:

prediction_i =
$$f\left(\beta^{\top}x_{i}\right)$$
,

where $\beta \in \mathbb{R}^{p}$ are the regression coefficients.

Often, **sparsity** is desired: can be cheaper to deploy, better out-of-sample performance, and important for interpretability.

Sparsity in Decision-Making Models

Learning model makes predictions based on a feature vector with p features, $x \in \mathbb{R}^{p}$. Suppose our model takes the form:

prediction_i =
$$f\left(\beta^{\top}x_{i}\right)$$
,

where $\beta \in \mathbb{R}^{p}$ are the regression coefficients.

Often, **sparsity** is desired: can be cheaper to deploy, better out-of-sample performance, and important for interpretability.

Measure sparsity with ℓ_0 pseudo-norm: $\|\beta\|_0 = \sum_{i=1}^p I(\beta_i \neq 0)$.

How do we build Sparse Machine Learning Models?

Given *n* observations with *p* features, $(x_i \in \mathbb{R}^p, y_i \in \mathbb{R})_{i=1}^n$, we train models by optimizing model coefficients $\beta \in \mathbb{R}^p$ that minimize loss function $\mathcal{L}(\beta)$.

(**REG**)
$$\zeta_R = \min_{\beta \in \mathbb{R}^p} \mathcal{L}(\beta) + \underbrace{\lambda \|\beta\|_2^2}_{\text{Shrinkage}} + \underbrace{\mu \|\beta\|_0}_{\text{Sparsity}}.$$

How do we build Sparse Machine Learning Models?

Given *n* observations with *p* features, $(x_i \in \mathbb{R}^p, y_i \in \mathbb{R})_{i=1}^n$, we train models by optimizing model coefficients $\beta \in \mathbb{R}^p$ that minimize loss function $\mathcal{L}(\beta)$.

(REG)
$$\zeta_R = \min_{\beta \in \mathbb{R}^p} \mathcal{L}(\beta) + \underbrace{\lambda \|\beta\|_2^2}_{\text{Shrinkage}} + \underbrace{\mu \|\beta\|_0}_{\text{Sparsity}}.$$

(CARD) $\zeta_C = \min_{\beta \in \mathbb{R}^p} \mathcal{L}(\beta) + \underbrace{\lambda \|\beta\|_2^2}_{\text{Shrinkage}} \text{ s.t } \underbrace{\|\beta\|_0 \le k}_{\text{Sparsity}}$

How do we build Sparse Machine Learning Models?

Given *n* observations with *p* features, $(x_i \in \mathbb{R}^p, y_i \in \mathbb{R})_{i=1}^n$, we train models by optimizing model coefficients $\beta \in \mathbb{R}^p$ that minimize loss function $\mathcal{L}(\beta)$.

- Exact sparsity makes this NP-hard
- Recent interest in using mixed integer optimization techniques to solve sparse learning to optimality

Goal: formulate sparse learning as a mixed integer optimization problem.

$$\zeta_R = \min_{\beta} \mathcal{L}(\beta) + \lambda \|\beta\|_2^2 + \mu \|\beta\|_0$$

1 Introduce **binary indicator** variables *z* to model ℓ_0 : $z_i = 0 \Rightarrow \beta_i = 0$.

$$\zeta_{R} = \min_{\beta, z} \mathcal{L}(\beta) + \lambda \sum_{i=1}^{p} \beta_{i}^{2} + \mu \sum_{i=1}^{p} z_{i}$$

s.t. $\beta_{i}(1 - z_{i}) = 0, \quad j \in [p]$
 $\beta \in \mathbb{R}^{p}, \ z \in \{0, 1\}^{p}$

2 Reformulate using the **perspective** function for each β_i^2 :

$$\zeta_R = \min_{\beta \in \mathbb{R}^p, \ z \in \{0,1\}^p} \mathcal{L}(\beta) + \lambda \sum_{i=1}^p \frac{\beta_i^2}{z_i} + \mu \sum_{i=1}^p z_i$$

 \rightarrow can be represented with conic quadratic constraints

- Have a MIP formulation, but scalability is a concern
- Atamtürk and Gómez (2020) introduce ℓ₂ − ℓ₀ screening rules: Use solution to the convex relaxation to safely prune or fix features (z_i = 0 or z_i = 1)
 - $\rightarrow~$ Eliminate features guaranteed to not be in the optimal solution
 - → **Reduce the dimension** of problem before the full optimization step, *improving solution times*

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Derived based on the dual of the perspective terms β_i^2/z_i , and only require solving the convex relaxation of the sparse learning problem.

Sparse learning problem:

$$\zeta_R = \min_{\beta \in \mathbb{R}^p, \ z \in \{0,1\}^p} \mathcal{L}(\beta) + \lambda \sum_{i=1}^p \frac{\beta_i^2}{z_i} + \mu \sum_{i=1}^p z_i$$

Relax binary constraints & take Fenchel dual of the perspective function:

$$\zeta(w) = \min_{\substack{\beta \in \mathbb{R}^p, \\ z \in [0,1]^p}} \mathcal{L}(\beta) + \sum_{i=1}^p \lambda w_i \beta_i + \sum_{i=1}^p \left(\mu - \lambda \frac{w_i^2}{4} \right) z_i$$

 $\rightarrow \zeta(w)$ gives a *lower bound* for ζ_R for any dual $w \in \mathbb{R}^p$

Relax binary constraints & take Fenchel dual of the perspective function:

$$\zeta(w) = \min_{\substack{\beta \in \mathbb{R}^{p}, \\ z \in [0,1]^{p}}} \mathcal{L}(\beta) + \sum_{i=1}^{p} \frac{\lambda w_{i}\beta_{i}}{\lambda w_{i}\beta_{i}} + \sum_{i=1}^{p} \left(\mu - \lambda \frac{w_{i}^{2}}{4}\right) z_{i}$$

 $\rightarrow \zeta(w)$ gives a *lower bound* for ζ_R for any dual $w \in \mathbb{R}^p$

 $\mu - \lambda \frac{w_i^2}{4}$ determines z_i

Relax binary constraints & take Fenchel dual of the perspective function:

$$\zeta(w) = \min_{\substack{\beta \in \mathbb{R}^{p}, \\ z \in [0,1]^{p}}} \mathcal{L}(\beta) + \sum_{i=1}^{p} \frac{\lambda w_{i} \beta_{i}}{\lambda w_{i} \beta_{i}} + \sum_{i=1}^{p} \left(\mu - \lambda \frac{w_{i}^{2}}{4} \right) z_{i}$$

(w) gives a *lower bound* for ζ_R for any dual $w \in \mathbb{R}^p$

$$\mu - \lambda \frac{w_i^2}{4} > 0 \Rightarrow z_i = 0$$

Relax binary constraints & take Fenchel dual of the perspective function:

$$\zeta(w) = \min_{\substack{\beta \in \mathbb{R}^{p}, \\ z \in [0,1]^{p}}} \mathcal{L}(\beta) + \sum_{i=1}^{p} \frac{\lambda w_{i} \beta_{i}}{\lambda w_{i} \beta_{i}} + \sum_{i=1}^{p} \left(\mu - \lambda \frac{w_{i}^{2}}{4} \right) z_{i}$$

(w) gives a *lower bound* for ζ_R for any dual $w \in \mathbb{R}^p$

$$\mu - \lambda \frac{w_i^2}{4} > 0 \Rightarrow z_i = 0$$

Lower bound: $\zeta(w) + \mu - \lambda \frac{w_i^2}{4} \leq \zeta_R(z_i = 1)$

Relax binary constraints & take Fenchel dual of the perspective function:

$$\zeta(w) = \min_{\substack{\beta \in \mathbb{R}^{p}, \\ z \in [0,1]^{p}}} \mathcal{L}(\beta) + \sum_{i=1}^{p} \frac{\lambda w_{i} \beta_{i}}{\lambda w_{i} \beta_{i}} + \sum_{i=1}^{p} \left(\mu - \lambda \frac{w_{i}^{2}}{4} \right) z_{i}$$

(w) gives a *lower bound* for ζ_R for any dual $w \in \mathbb{R}^p$

$$\mu - \lambda \frac{w_i^2}{4} > 0 \Rightarrow z_i = 0$$

Lower bound: $\zeta(w) + \mu - \lambda \frac{w_i^2}{4} \leq \zeta_R(z_i = 1)$

$$\zeta(w) + \mu - \lambda \frac{w_i^2}{4} > \zeta_u \Rightarrow$$
 no optimal solution has $z_i = 1$.

Prop. (Atamtürk and Gómez (2020)) Safe Screening for (REG)

For any dual variable $w \in \mathbb{R}^p$, let $\alpha = \mu - \lambda \frac{w^2}{4}$ and ζ_u an upper bound on **(REG)**. Then any optimal solution z^* to **(REG)** satisfies the following rule given the corresponding condition holds.

Condition	Screening Rule
$\zeta(w) + \alpha_i > \zeta_u$	$z_{i}^{*} = 0$
$\zeta(w) - \alpha_i > \zeta_u$	$z_i^* = 1$

Very effective if relaxation gap is small, but degrades as gap increases.

Prop. (Atamtürk and Gómez (2020)) Safe Screening for (REG)

For any dual variable $w \in \mathbb{R}^p$, let $\alpha = \mu - \lambda \frac{w^2}{4}$ and ζ_u an upper bound on **(REG)**. Then any optimal solution z^* to **(REG)** satisfies the following rule given the corresponding condition holds.

Condition	Screening Rule
$\zeta(w) + \alpha_i > \zeta_u$	$z_{i}^{*} = 0$
$\zeta(w) - \alpha_i > \zeta_u$	$z_{i}^{*} = 1$

Very effective if relaxation gap is small, but degrades as gap increases.

 \rightarrow We introduce logic rules, generalizing screening rules: consider the **logical relationships** between **groups** of features

Atamtürk, Deza, Gómez

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Introducing Logic Rules

Logic rules screen for:

Simultaneous inclusion	Simultaneous exclusion	Pairwise ranking of
of features	of features	features
$z_i + z_j \leq 1$	$z_i + z_j \ge 1$	$z_i \leq z_j$

Screening rules derivation: If $\zeta(w) + \alpha_i > \zeta_u \Rightarrow \mathbf{z}_i^* = \mathbf{0}$. Logic rules: want a lower bound for $\zeta_R(z_i = 1, z_j = 1)$

Introducing Logic Rules

Logic rules screen for:

Simultaneous inclusion	Simultaneous exclusion	Pairwise ranking of
of features	of features	features
$z_i + z_j \leq 1$	$z_i + z_j \ge 1$	$z_i \leq z_j$

Screening rules derivation: If $\zeta(w) + \alpha_i > \zeta_u \Rightarrow \mathbf{z}_i^* = \mathbf{0}$. Logic rules: want a lower bound for $\zeta_R(z_i = 1, z_j = 1)$

 \rightarrow Natural lower bound: $\zeta(w) + \alpha_i + \alpha_j$

$$\rightarrow \zeta(w) + \alpha_i + \alpha_j > \zeta_u \Rightarrow \mathsf{z}_\mathsf{j} + \mathsf{z}_\mathsf{k} \leq \mathbf{1}$$

Logic Rules

Prop. Logic Rules for (REG)

For any dual variable $w \in \mathbb{R}^p$, let $\alpha_i = \mu - \frac{\lambda}{4}w_i^2$ and ζ_u be an upper bound on **(REG)**. Then any optimal solution z^* to **(REG)** satisfies the following rule given the corresponding condition holds.

Condition	Logic Rule
$\zeta(w) - \alpha_j - \alpha_k > \zeta_u$	$z_i + z_j \ge 1$
$\zeta(w) + \alpha_i + \alpha_j > \zeta_u$	$z_i + z_j \leq 1$
$\zeta(w) + \alpha_i - \alpha_j > \zeta_u$	$z_i - z_j \leq 0$
$\zeta(w) - \alpha_i + \alpha_j > \zeta_u$	$z_i - z_j \leq 0$

Logic Rules

Prop. Logic Rules for (REG)

For any dual variable $w \in \mathbb{R}^p$, let $\alpha_i = \mu - \frac{\lambda}{4}w_i^2$ and ζ_u be an upper bound on **(REG)**. Then any optimal solution z^* to **(REG)** satisfies the following rule given the corresponding condition holds.

Condition	Logic Rule
$\zeta(w) - \alpha_j - \alpha_k > \zeta_u$	$z_i + z_j \ge 1$
$\zeta(w) + \alpha_i + \alpha_j > \zeta_u$	$z_i + z_j \leq 1$
$\zeta(w) + \alpha_i - \alpha_j > \zeta_u$	$z_i - z_j \leq 0$
$\zeta(w) - \alpha_i + \alpha_j > \zeta_u$	$z_i - z_j \leq 0$

• On their own, pairwise interactions do not help much

 \rightarrow We want to construct stronger relationships, and leverage them

How can logic rules help?

Solvers can exploit constraints of the type $\sum_{i \in S} z_i \leq 1$ (SOS1)

- More effective branching
- Better preprocessing, heuristics, cutting planes, may lead to order-of-magnitudes speedup (Fischer & Pfetsch, 2018)

How can logic rules help?

Solvers can exploit constraints of the type $\sum_{i \in S} z_i \leq 1$ (SOS1)

- More effective branching
- Better preprocessing, heuristics, cutting planes, may lead to order-of-magnitudes speedup (Fischer & Pfetsch, 2018)

We can use logic rules to get such implications.

How can logic rules help?

Solvers can exploit constraints of the type $\sum_{i \in S} z_i \leq 1$ (SOS1)

- More effective branching
- Better preprocessing, heuristics, cutting planes, may lead to order-of-magnitudes speedup (Fischer & Pfetsch, 2018)

We can use logic rules to get such implications.

Build **conflict graph** to get clique inequalities

Z₂

Logic rules imply a conflict graph G = (V, E) with $V = \{1, ..., p\}$ and $E = \{(i, j) : z_i + z_j \le 1, i, j \in V\}.$

Logic rules imply a conflict graph G = (V, E) with $V = \{1, ..., p\}$ and $E = \{(i, j) : z_i + z_j \le 1, i, j \in V\}.$

For any clique C, at most one vertex can be selected: $\sum_{i \in C} z_i \leq 1$.

Example:

$$\begin{split} z_1 + z_2 &\leq 1, z_1 + z_2 \leq 1, z_2 + z_3 \leq 1 \\ z_4 + z_5 &\leq 1, z_4 + z_6 \leq 1, z_5 + z_7 \leq 1 \\ z_5 + z_6 &\leq 1, z_5 + x_7 \leq 1, z_6 + z_7 \leq 1 \\ z_2 + z_4 &\leq 1, z_3 + z_7 \leq 1 \end{split}$$

Logic rules imply a conflict graph G = (V, E) with $V = \{1, ..., p\}$ and $E = \{(i, j) : z_i + z_j \le 1, i, j \in V\}.$

For any clique C, at most one vertex can be selected: $\sum_{i \in C} z_i \leq 1$.

Example:

 $\begin{aligned} z_1 + z_2 &\leq 1, z_1 + z_2 \leq 1, z_2 + z_3 \leq 1\\ z_4 + z_5 &\leq 1, z_4 + z_6 \leq 1, z_5 + z_7 \leq 1\\ z_5 + z_6 &\leq 1, z_5 + x_7 \leq 1, z_6 + z_7 \leq 1\\ z_2 + z_4 &\leq 1, z_3 + z_7 \leq 1 \end{aligned}$

Logic rules imply a conflict graph G = (V, E) with $V = \{1, ..., p\}$ and $E = \{(i, j) : z_i + z_j \le 1, i, j \in V\}.$

For any clique C, at most one vertex can be selected: $\sum_{i \in C} z_i \leq 1$.

Example: $z_1 + z_2 + z_3 \le 1$ $z_4 + z_5 + z_6 + z_6 \le 1$ $z_2 + z_4 \le 1, z_3 + z_7 \le 1$

To make strongest implications, want to identify all maximal cliques

Logic rules imply a conflict graph G = (V, E) with $V = \{1, ..., p\}$ and $E = \{(i, j) : z_i + z_j \le 1, i, j \in V\}.$

For any clique C, at most one vertex can be selected: $\sum_{i \in C} z_i \leq 1$.

Example: $z_1 + z_2 + z_3 \le 1$ $z_4 + z_5 + z_6 + z_6 \le 1$ $z_2 + z_4 \le 1, z_3 + z_7 \le 1$

- To make strongest implications, want to identify all maximal cliques
- For general graphs: exponentially many maximal cliques...
- ightarrow We can exploit special structure of G generated by logic rules

Chordal Graphs

Definition (Chordal Graph)

A graph is chordal if every cycle of length at least four contains a chord, that is, an edge between two non-adjacent vertices on the cycle.

Chordal Graphs

Theorem

A chordal graph has linearly many maximal cliques.

Chordal Graphs

Theorem

A chordal graph has linearly many maximal cliques.

The conflict graph G generated by the logic rules is chordal.

 \rightarrow Can exploit structure to find all maximal cliques in polynomial time

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a $\mathcal{O}(p \log p)$ time algorithm to find **all maximal cliques** generated by the conflict graph implied by the logic rules.

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a $\mathcal{O}(p \log p)$ time algorithm to find **all maximal cliques** generated by the conflict graph implied by the logic rules.

Key: Logic Rules say $\alpha_i + \alpha_j > \zeta_u - \zeta(w) \Rightarrow (i,j) \in E$.

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a $\mathcal{O}(p \log p)$ time algorithm to find **all maximal cliques** generated by the conflict graph implied by the logic rules.

Key: Logic Rules say
$$\alpha_i + \alpha_j > \zeta_u - \zeta(w) \Rightarrow (i,j) \in E$$
.

Suppose α happens to be sorted in decreasing order.

• If
$$\alpha_i + \alpha_{i+n} > \zeta_u - \zeta(w)$$

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a $\mathcal{O}(p \log p)$ time algorithm to find **all maximal cliques** generated by the conflict graph implied by the logic rules.

Key: Logic Rules say
$$\alpha_i + \alpha_j > \zeta_u - \zeta(w) \Rightarrow (i,j) \in E$$
.

Suppose α happens to be sorted in decreasing order.

- If $\alpha_i + \alpha_{i+n} > \zeta_u \zeta(w) \Rightarrow \alpha_\ell + \alpha_{i+n} > \zeta_u \zeta(w) \ \forall \ell = 1, \dots, i.$
- Then we have $\{1, 2, \dots, i, i + n\}$ is a clique.

Prop. Polynomial Time Algorithm for Maximal Cliques

We propose a $\mathcal{O}(p \log p)$ time algorithm to find **all maximal cliques** generated by the conflict graph implied by the logic rules.

Key: Logic Rules say
$$\alpha_i + \alpha_j > \zeta_u - \zeta(w) \Rightarrow (i,j) \in E$$
.

Suppose α happens to be sorted in decreasing order.

- If $\alpha_i + \alpha_{i+n} > \zeta_u \zeta(w) \Rightarrow \alpha_\ell + \alpha_{i+n} > \zeta_u \zeta(w) \ \forall \ell = 1, \dots, i.$
- Then we have $\{1, 2, \dots, i, i + n\}$ is a clique.

Algorithm: sort α , then scan. Notice: no need to build G!

Overview of logic rules

Stage 1: Make building blocks. Find logical relationships between *pairs* of features, equivalent to exclusivity constraints. **Stage 2**: Construct stronger inequalities. Construct stronger inequalities implied by Stage 1, equivalent to finding maximal cliques in a conflict graph.

 \rightarrow Solve a convex problem

 \rightarrow Exploit special structure to efficiently find all maximal cliques

Overview of logic rules

Stage 1: Make building blocks. Find logical relationships between *pairs* of features, equivalent to exclusivity constraints. **Stage 2**: Construct stronger inequalities. Construct stronger inequalities implied by Stage 1, equivalent to finding maximal cliques in a conflict graph.

 \rightarrow Solve a convex problem $\qquad \rightarrow$ Exploit special structure to efficiently find all maximal cliques

Output: $\{C_1, C_2, \ldots, C_t\}$ such that $\sum_{i \in C_j} z_i \leq 1$ is safe to add to our sparse learning problem.

Table of Contents

Mixed Integer Programming for Sparse Learning

Screening Rules

Logic Rules

Numerical Results

Numerical Results

We solve (cardinality-constrained) sparse linear regression on synthetic and real data sets and compare:

- Gurobi alone
- Gurobi + screening rules
- Gurobi + screening rules + logic rules

Synthetic Data

We generate synthetic data with 1000 features, 100 observations, and vary the noise level (SNR) and ℓ_2 regularization strength (λ). Solve with cardinality constraint, k = 10.

Synthetic Data

We generate synthetic data with 1000 features, 100 observations, and vary the noise level (SNR) and ℓ_2 regularization strength (λ). Solve with cardinality constraint, k = 10.

SNR	λ	RGap %	GRB Runtime (s)	GRB + Screen Runtime (s)	GRB + Screen + Logic Runtime (s)
	1/10	47.4	1,572	1,574	981
0.05	1/8	31.6	1,083	1,083	581
0.05	1/4	7.5	761	4.1	3.8
	1/2	1.6	439	0.7	0.7
	1/10	39.8	728	733	482
1.0	1/8	28.5	715	505	266
1.0	1/4	7.5	646	7.8	6.4
	1/2	1.5	386	0.6	0.6
	1/10	25.5	684	276	57
6.0	1/8	20.3	755	163	40
0.0	1/4	6.0	605	1.0	1.0
	1/2	1.4	527	0.5	0.5
Avera	age	18.2	741	362	202

Synthetic Data

Real Data Results

We use the Riboflavin dataset, 4,088 with 71 observations, varying the sparsity constraint (k) and ℓ_2 regularization strength (λ) . We solve with a one-hour time limit, reporting the end gap if no solution is found.

Real Data Results

We use the Riboflavin dataset, 4,088 with 71 observations, varying the sparsity constraint (k) and ℓ_2 regularization strength (λ) . We solve with a one-hour time limit, reporting the end gap if no solution is found.

k/p	10 ² <mark>\ \ 0</mark>	GRB + Screen Runtime (s)	GRB + Screen + Logic Runtime (s)
	2.5	(35%)	(3%)
0.25%	4	91	87
	5	39	38
	2.5	128	109
0.5%	4	47	42
	5	38	38
	2.5	187	156
1.25%	4	50	47
	5	37	37

Real Data Results

We use the Riboflavin dataset, 4,088 with 71 observations, varying the sparsity constraint (k) and ℓ_2 regularization strength (λ) . We solve with a one-hour time limit, reporting the end gap if no solution is found.

k/p	10 ² λ ₀	GRB + Screen Runtime (s)	GRB + Screen + Logic Runtime (s)
	2.5	(35%)	(3%)
0.25%	4	91	87
	5	39	38
	2.5	128	109
0.5%	4	47	42
	5	38	38
	2.5	187	156
1.25%	4	50	47
	5	37	37

k/p	10 ² <mark>\</mark> 0	GRB + Screen Runtime (s)	GRB + Screen + Logic Runtime (s)
	2.5	(66%)	(24%)
2.5%	4	(59%)	(11%)
	5	1,607	3,044
	2.5	(46%)	(14%)
3.5%	4	1,134	622
	5	1,441	399
	2.5	2,677	1,290
5%	4	1,228	434
	5	3,101	410

Conclusion

Logic rules are general preprocessing framework that generates inequalities that can be leveraged by mixed integer optimization solvers to speed up sparse learning computation.

- Proposed method is **efficient** due to the exploitation of the underlying structure (chordality) in the conflict graph generated by the inequalities.
- Complements screening rules by helping in cases where they are unsuccessful (large relaxation gaps).